Parallel Scenario Decomposition of Risk-Averse 0-1 Stochastic Programs
نویسندگان
چکیده
In this paper, we extend a recently proposed scenario decomposition algorithm (Ahmed (2013)) for risk-neutral 0-1 stochastic programs to the risk-averse setting. Specifically, we consider risk-averse 0-1 stochastic programs with objective functions based on coherent risk measures. Using a dual representation of a coherent risk measure, we first derive an equivalent minimax reformulation of the considered problem. We then develop three variants of the scenario decomposition algorithm for this minimax formulation based on different relaxations of the nonanticipaticity constraints. The algorithms proceed by solving scenario subproblems to obtain candidate solutions and bounds, and subsequently cutting off the candidate solutions from the search space to achieve convergence to an optimal solution. We design three parallelization schemes for implementing the algorithms with different tradeoffs between communication time and computation time. Our computational results with risk-averse extensions of two standard stochastic 0-1 programming test instances demonstrate the scalability of the proposed decomposition and parallelization framework.
منابع مشابه
A Risk-averse Inventory-based Supply Chain Protection Problem with Adapted Stochastic Measures under Intentional Facility Disruptions: Decomposition and Hybrid Algorithms
Owing to rising intentional events, supply chain disruptions have been considered by setting up a game between two players, namely, a designer and an interdictor contesting on minimizing and maximizing total cost, respectively. The previous studies have found the equilibrium solution by taking transportation, penalty and restoration cost into account. To contribute further, we examine how incor...
متن کاملConvergence Analysis of Sampling-Based Decomposition Methods for Risk-Averse Multistage Stochastic Convex Programs
We consider a class of sampling-based decomposition methods to solve risk-averse multistage stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of Stochastic Dual Dynamic Programming applied to convex nonlinear problems. We prove the al...
متن کاملScenario-based modeling for multiple allocation hub location problem under disruption risk: multiple cuts Benders decomposition approach
The hub location problem arises in a variety of domains such as transportation and telecommunication systems. In many real-world situations, hub facilities are subject to disruption. This paper deals with the multiple allocation hub location problem in the presence of facilities failure. To model the problem, a two-stage stochastic formulation is developed. In the proposed model, the number of ...
متن کاملSampling-Based Decomposition Methods for Multistage Stochastic Programs Based on Extended Polyhedral Risk Measures
We define a risk-averse nonanticipative feasible policy for multistage stochastic programs and propose a methodology to implement it. The approach is based on dynamic programming equations written for a risk-averse formulation of the problem. This formulation relies on a new class of multiperiod risk functionals called extended polyhedral risk measures. Dual representations of such risk functio...
متن کاملA scenario decomposition algorithm for 0-1 stochastic programs
We propose a scenario decomposition algorithm for stochastic 0-1 programs. The algorithm recovers an optimal solution by iteratively exploring and cutting-off candidate solutions obtained from solving scenario subproblems. The scheme is applicable to quite general problem structures and can be implemented in a distributed framework. Illustrative computational results on standard two-stage stoch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- INFORMS Journal on Computing
دوره 30 شماره
صفحات -
تاریخ انتشار 2018